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Sparse Sensor Placement (SSP)

SSP for data assimilation and Experiment
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Minimization of the analysis error

𝐙𝑏 ≈ 𝐔𝑟𝚺𝑟𝐕𝑟
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This condition is the same as BDG.

→ BDG is the SSP method for DA, mathematically.

Experimental procedure

1. To select obs. points using SSP

2. To generate obs. data by adding noise 𝑁 0, 1 to 

validation data

3. To estimate SST fields from obs. using data assimilation

ത𝐱𝑏 : temporal average of the training data 𝐗
𝐙𝑏: deviation of 𝐗 from the temporal average ത𝐱𝑏

Summary
➢We aim to develop a sensor selection method suitable for data assimilation (DA).

➢ Sparse Sensor Placement (SSP) is a sensor selection method developed in information engineering.

➢ The most suitable SSP for DA is the conventional SSP method, BDG, considering singular value and regularization term.

➢ BDG doesn’t need tunings of the number of modes.
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Estimation of vector 𝐚 Conditions of the opt. obs.
Minimization of 

the estimation 

error of 𝐚

SSP is the sensor selection method to minimize the estimation error of the low-dimensional state vector 𝐚.

Monthly NOAA-SST

Singular Value Decompn.

time

Experimental settings

Data: Monthly NOAA-SST

Training: 1995-1999         Validation: 2005-2014
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(Saito et al.

2022)
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(a) HMODE  𝒓 = 𝟏𝟎 (b) HSQRT  𝒓 = 𝟏𝟎 (c) BDG  𝒓 = 𝟏𝟎

(d) HMODE  𝒓 = 𝟔𝟎 (e) HSQRT  𝒓 = 𝟔𝟎 (f) BDG  𝒓 = 𝟔𝟎

If the num of modes 𝒓 increases…

→→→ →→→

Lower RMSEs

3 different methods for SSP

Bayesian-based Determinant Greedy; BDG

𝑝: the num. of obs.     𝑟: the num. of modes

➢ HMODE: RMSE increases with 𝑟.

➢ HSQRT, BDG: RMSE is insensitive to 𝑟.

➢ Singular values represent the amplitude of each 

mode.

→ We don’t need the tuning of the num. of   
 modes with HSQRT or BDG .
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Sensor locations determined with SSP

➢ When 𝑟 = 10, sensors are placed in offshore Peru 

to represent the ENSO mode.

➢ When 𝑟 = 60 

HMODE: No sensors represent ENSO.

HSQRT, BDG: Some sensors represent ENSO.
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